Small-scale wind turbines in cities and suburbs

S Tullis, K Aly, R Bravo, A Fießer, S Kooiman, K McLaren S Ziada
Mechanical Engineering Department
Introduction

- Small wind
 - <200 m² = 16 m diameter
 - typically smaller <10kW

- Cities and suburbs
 - “dirty” wind
 - rooftop mounting

- Reputation
Small wind turbines in the urban environment: Current Research at McMaster University

Nominal performance:
Full-scale wind tunnel testing

Actual performance:
Rooftop testing

Structural and vibrations:
FEA, Measurements

CFD Analysis:
Flow within turbine and around building

Kevin McLaren

Stephen Kooiman
Outline

- Introduction
- Wind in the urban environment
- Traditional HAWTs in cities
- VAWTs
- VAWTs in “dirty” wind
Main Issues

- Technical
 - power performance
 - noise
 - vibration
- Regulatory
 - certification
 - grid connection
 - bylaws
- Economic
 - cost and payback
 - incentives
Urban wind

- Lower wind velocity due to larger ground roughness within urban environments
- Rooftops can give height
- Complex vortical flow structures over and around buildings
- High turbulence levels
Horizontal axis small wind turbines

- Numerous suppliers of turbines for tower/field installation
- Yaw to face wind -
 - high mount and blade loads with rapid yaw
 - maintenance, servicing, warranties
- Non-uniform wind into turbine
- High tip speeds lead to noise
Vertical axis wind turbines

- Combination of blade rotation and incident wind give blade lift (torque)
- Research and commercialization of medium/large VAWTs in 1970s & 1980s
- Small VAWTs mainly H-type
VAWTs in “dirty” air

- Non-directionality
- Ability to handle unsteady, non-uniform, turbulent wind
- Renewal of interest in VAWTs for urban installation
 - Turby
 - Quiet Revolution
 - Cleanfield Energy
- Issues
 - power performance
 - noise
 - vibration
Power performance

- Peak power tracking
 - eg using known “clean” wind performance curves
- Even look at constant RPM

Wind speed and turbine power for rooftop installation at constant RPM (Not peak power tracking)
Power performance

- All has to do with response times
 - aerodynamic respond to wind gusts and lulls is fast
 - non-linear due to large scale flow structures and turbulence

- Peak power tracking controller

- Spin up / spin down time depends on turbine inertia
Noise

- One of the pros of VAWTs - relatively quiet

- Noise is proportion to blade velocities

- Blades are all at the max radius,
 - no high speed tips
 - actual blade speeds are low relative to HAWTs
 - low noise
Vibration

- Coincidence between structural modes and excitation frequencies.
- Structural modes affected by installation, tower, turbine whirl
- Sources of excitation:
 - unbalance,
 - aerodynamic loading of blades
- Rooftops are not usually designed or built for such loads
Vibration reduction

- Reduce excitation
 - helical blades
 - low RPM (high solidity)
 - blade design
- Controller deadbanding
- Isolation, damping
Conclusions

- “Dirty” air in urban environment is unsuited to traditional small-scale HAWTs
- Small VAWTs are able to handle the “dirty” air
- Main technical issues
 - power
 - noise
 - vibration
Acknowledgments

The authors would like to acknowledge the support of:
Nominal Performance:
Full scale wind tunnel testing
Performance: Power curves (dimensional)

![Power curves](image)

- Power from load cell
 - 6 ms
 - 8 m/s
 - 10 m/s (day 1)
 - 10.5 m/s (day 2)
 - 12.4 m/s (day 1)
 - 12.1 m/s (day 2)
 - 14 m/s (day 1)
 - 14 m/s (day 2)
 - 16 m/s

- Rotary speed (RPM)
 - 0
 - 20
 - 40
 - 60
 - 80
 - 100
 - 120
 - 140
 - 160

- Power (W)
 - 0
 - 500
 - 1000
 - 1500
 - 2000
 - 2500
 - 3000
 - 3500
Performance: Power curves (dimensionless)

\[C_p = \frac{\text{Shaft power}}{\text{Wind power}} \]

Tip speed ratio = \(\frac{\text{Blade speed}}{\text{Wind speed}} \)
Total vibration levels

Total rms (Streamwise)

Total rms (Crosswise)
Vibration spectra - Campbell diagrams