Hybrid Power Systems & Storage

Buena Vista, CO
Hybrids: Big Picture

- What Are They?
 Generation from Multiple Sources
- Are They New?
 Certainly Not
 Always Have Been Hybrid Power Systems
 Large Networks are Hybrids

Paul Gipe, wind-works.org
Classification: Size

- **Capacity**
 kW, MW

- **Population**
 Dozens, Hundreds, Thousands, Tens of Thousands

- **Nation States**
 After All, What is a Network but a Hybrid

Paul Gipe, wind-works.org
Classification: Remoteness

• Connected to the Grid
 Islands Connected to Mainland
 Backup Power
 Frequency Stabilization
 Villages & Regions

• Not Connected to Grid
 Islands Not Connected to Mainland
 Remote Villages
 Homesteads Off-the-Grid

Paul Gipe, wind-works.org
Hybrids--Resources

- Most Commonly
 Hydro, Wind & Solar
- Often
 Biogas
- Occasionally
 Geothermal
Hybrids--A State of Mind

• Texas?
 Only Limited Connection to USA
• Iceland--The Island Nation
Some Examples

• Iceland
 300,000 people; 100,000 km²

• Samsø (Island), Denmark
 4,3000 people; 112 km²
 Interconnected with Mainland

• El Hierro (Island), Spain
 10,000 people

• Pellworm (Island), Germany
 1,200 people; 37 km²

• Dardeshiem, Germany
 1,000 people

Paul Gipe, wind-works.org
Iceland

• Electricity: 100% Renewable
 75% Hydro, 25% Geothermal
 2 Token Wind Turbines

• Heating: 85% Renewable
 Geothermal Hot Water
Samsø: Denmark’s Renewable Energy Island

- **100% Electricity**
 Onshore Wind Turbines (Cooperatively-Owned) Connected to Mainland

- **70% Heat**
 Biomass: Straw Burning District Heating

- **Transportation**
 Offsets
 Offshore Wind Turbines
 Substitution
 Biodiesel

Paul Gipe, wind-works.org
El Hierro (Canary Islands), Spain

- Wind: 11 MW, 5 Wind Turbines
- Pumped Storage
 Energy & Frequency Control

Paul Gipe, wind-works.org
El Hierro, Canary Islands

- 100% a Favorite of Rightwing Ire
- 100% of What?
- Confusion Between Electricity & Energy
- ~40% of Electricity
- Target Now 80% Of Electricity

Paul Gipe, wind-works.org
Pellworm (Island), Germany

• Interconnected with Mainland
• 200% RE supply
 70% Wind
 10% Solar PV
 6% Biogas

Paul Gipe, wind-works.org
Pellworm (Island), Germany

- Demonstration Hybrid
- Wind, Solar, Biogas
- 700,000 kWh/yr

Paul Gipe, wind-works.org

http://reregions.blogspot.com/2010/03/pellworm-island.html
Dardesheim, Germany’s Renewable Energy Village

Wind, Solar PV, Biogas
EV Charging
Dardesheim Wind

- 62 MW Wind
 - 28 Enercon E70s, 1 Enercon E126 (6 MW)

Paul Gipe, wind-works.org
Dardesheim Solar & Biogas

- Solar Pig Sty
- Biogas from Manure

Paul Gipe, wind-works.org
Dardesheim, Germany

- 10X Total Energy Needs
- 40X Electricity Consumption
- Wind: 120-130 million kWh/yr
- Solar PV: 250,000 kWh/yr
- Biogas

Paul Gipe, wind-works.org
Esperance, Australia

- 1,000 people, Very Remote
- 1993: 2 MW Wind Ten Mile Lagoon
- 2003: 3.6 MW Wind Nine Mile Beach
- 23% Wind
- Gas Turbines

Paul Gipe, wind-works.org

By Tam - flickr: Ten Mile Lagoon Wind Farm Esperance
Saint Paul, Alaska (Pribilof Islands)

- 500 people; $0.50/kWh w/o Subsidy
- 1999: Wind-Diesel Twinning (*Jumelage*)
- 1 Used Vestas V27 225 kW
- No Batteries
- 27,000 L Thermal Storage
 Load Used to Regulate Frequency
- **Synchronous Generator**

Paul Gipe, wind-works.org
Saint Paul, Alaska (Pribilof Islands)

- 2007: Added 2nd Turbine
- Diesel
 - 2 x 150 kW
 - Cut Consumption 50%
- Currently: 3 Wind Turbines
- Periodic 100% Wind

Paul Gipe, wind-works.org
Special Applications
Off-the-Grid Homes

• Wind, Solar PV
• Backup Generator
• Storage Batteries

Paul Gipe, wind-works.org
Telecom Hybrids

- Wind & Solar PV
- Backup Generator
- Storage Batteries
Wind & EVs

Paul Gipe, wind-works.org

2008, Tehachapi, California
Wind & EVs

- Marriage Made in Heaven
- EVs Are a Disruptive Technology

Paul Gipe, wind-works.org

2005, Vienna to Denmark in an EV!
EVs: Distributed Storage

- ILSR: Distributed Storage Makes Distributed Generation More Valuable
- Micro Grids with Sun, Wind, & EVs
- More Comprehensive Solution
- Use More Generation On-Site!

Paul Gipe, wind-works.org
Hybrid Wind & Solar: Hourly

May 9-11, 2014: % production PV, Wind, [PV + Wind]. Source of data: EEX

Paul Gipe, wind-works.org
Hybrid Wind & Solar: Monthly

Average Daily Productivity Nhd on 2 years (1/12 to 12/13)

Paul Gipe, wind-works.org
Storage

The storage problem is solved - technically
Gas storage is unique with storage capacity

Source: Sterner, Stadler, 2014
Prof. Dr. Sterner, OTHR, S. 6

Paul Gipe, wind-works.org
Germany Need for Storage

• Not Needed for RE <60% of Supply
• Storage?
 - Hot Water for District Heating
 - Wind-to-Gas
• Germany Has 220 TWh or NG Storage
• ~4X 60 TWh Storage Needed for 80% RE in Electricity

Paul Gipe, wind-works.org
Hybrid Power Systems

- Nothing New
- Exist in All Sizes
- Use a Mix of Resources

It’s All About the Mix

David Nixon displaying a micro wind-solar hybrid at the Kortright Centre, Ontario

Paul Gipe, wind-works.org
• Hourly production of wind and solar in Germany. The generation from wind and solar together smoothes out the hourly fluctuations from each technology individually. However, during these three days in May 2014, wind was far less variable than the predictable variation in solar. (Bernard Chabot)
• Average daily productivity of wind and solar in Germany for 2013. Though wind and solar vary widely throughout the day and through the seasons, combined they offer a much smoother form of generation than either alone. To minimize integration costs, it’s necessary to optimize the proportions of each technology on the system. (Bernard Chabot)

Paul Gipe, wind-works.org